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Abstract
We present theory outlining associated linear problems for ultradiscrete
equations. The appropriate domain for these problems is the max-plus semiring.
Our main result is that despite the restrictive nature of the max-plus semiring,
it is still possible to define a theory of connection matrices analogous to that of
Birkhoff and his school for systems of linear difference equations. We use such
theory to provide evidence for the integrability of an ultradiscrete difference
equation.

PACS numbers: 02.30.Ik, 05.45.−a
Mathematics Subject Classification: 39A13, 33C70, 37J35, 16Y60

The discrete versions of the Painlevé equations [16] can be considered integrable systems.
There are many ways in which one may provide evidence for the integrability of difference
equations; these include singularity confinement [16, 6] (which is widely regarded as the
discrete analogue of the Painlevé property) and algebraic entropy [24]. The approach we wish
to extend relies on associated systems of linear difference equations. One may consider a
system integrable if the system possesses a Lax pair in the discrete sense [13]. One may also
extend this notion so that the derivation of the Lax pair comes as the compatibility condition
of a connection matrix preserving deformation [8, 20]. The concept of a connection matrix
is one that was first formulated by Birkhoff and his school [1, 2] and was later extended by
Ramis and his school [21].

Ultradiscrete equations are the result of applying a limiting process to difference equations
[23]. The resulting system is one in which you may restrict the evolution to a discrete set,
making them discrete in time, space and state [15]. For this reason, these systems are sometimes
called cellular automata [7]. The object of our study will be the ultradiscrete versions of the
Painlevé equations [15]. Although one expects this process to preserve integrability, we are
still required to provide evidence for the integrability of such equations for them to be called
integrable. It was shown that some ultradiscrete integrable systems do possess Lax pairs
[9, 17]; we wish to extend this theory by establishing the concept of a connection matrix for
these associated linear problems.
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http://dx.doi.org/10.1088/1751-8113/40/42/S22
mailto:chriso@maths.usyd.edu.au
http://stacks.iop.org/JPhysA/40/12799


12800 C Ormerod

This paper aims to provide evidence of integrability for the difference equation

W + W = max(2W,A + T ) − max(0, A + 2W + T ) (1)

where W = W(T ),W = W(T + Q) and W = W(T − Q) for some fixed Q ∈ R\{0}. This
is an ultradiscretization of a known version of q-PIII [9] which we will call u-PIII . This
ultradiscrete equation was shown to have a Lax pair [9]. We intend to show that this system
comes as a compatibility condition of a connection preserving deformation. We do this by
introducing some theory that allows us to treat these problems systematically. By utilizing a
lift similar to those studied in the context of tropical geometry [18] we are able to explore the
properties of these systems on the level of non-Archimedean valuation fields.

For convenience we will introduce the max-plus semiring and their associate linear spaces
in section 1. We consider this the natural domain for the ultradiscrete equations. We will
introduce the non-Archimedean valuation field we will use to study equations over the max-
plus semiring and describe the way in which one lifts a problem to this field. In section 2 we
present results pertaining to linear systems of difference equations over the semiring. As an
application of this theory we present the derivation of (1) in section 3.

1. The max-plus semiring

Given an additively and topologically closed subset of the real numbers, U ⊂ R, we construct
the semiring, S = U ∪ {−∞}, by adjoining the binary operations max and +. We call these
operations tropical addition and tropical multiplication and denote these operations by ⊕ and
� respectively. We note that 0 plays the role of the multiplicative identity and −∞ plays
the role of the additive identity. The semiring was coined a ‘tropical’ semiring by a French
mathematician by the name of Dominique Perrin [14] in honour of a Brazilian mathematician
named Simon Imre who wrote the foundational material on the max-plus semiring [22]. Hence
the word ‘tropical’ here has no other meaning but to represent the French view of Brazil. This
semiring and its associated linear spaces have been studied extensively in the context of
computer science (see [3] and references therein).

To define tropical matrix operations over the max-plus semiring, one simply replaces
operations of addition and multiplication in normal matrix operations with their tropical
equivalents. Hence we define the tropical analogues of matrix addition and multiplication by
⊕ and � respectively by the equations

(A ⊕ B)ij := max(aij , bij )

(A � B)ij := max
k

(aik + bkj )

where A = (aij ) and B = (bij ). For any s ∈ S we define a scalar product by the equation

(s � A)ij = s + aij .

This provides a tropical matrix setting for our Birkhoff theory.
In addition to constructing linear spaces over S, we wish to have a notion in which things

converge. We endow S with the metric

d(x, y) = |ex − ey | (2)

where we define e−∞ to be 0. The advantage of this metric is that when we restrict our
attention to the topology on U, we have the same topology as the induced topology on R. One
important difference is that we consider sequences tending to −∞ to be convergent.

Given a subtraction-free q-difference equation, it is a routine procedure to obtain a
corresponding ultradiscrete equation over S. The procedure is called ultradiscretization. This
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process was originally used to draw a link between the box-and-ball system and the discrete
KdV equation [23]. Given a rational expression in a set of positive real variables, say
f (a1, a2, . . . , an), we introduce a set of ultradiscrete variables, say Ai , related to the original
variables via the relation ai = eAi/ε . The ultradiscrete analogue of the rational expression is
given by the limit

F(A1, . . . , An) = lim
ε→0

ε log f (a1, . . . , an). (3)

The process can be alternatively stated by giving the following correspondences between
expressions over R+ and S. Given a = eA/ε and b = eB/ε , the ultradiscretization procedure is
as follows:

a + b → max(A,B) (4a)

ab → A + B (4b)

a/b → A − B. (4c)

By replacing all operations specified on the left-hand side of (4) with the corresponding
operation on the right-hand side, one derives the required ultradiscrete expression. For
example, given the q-difference equation

w(qt)w(t/q) = at + w2

1 + atw2
,

it is easily verifiable that the ultradiscretization of this equation is (1). Ultradiscrete analogues
of all the Painlevé equations have been given along with many of the properties that these
equations possess [15]. It is the integrability of these equations that we wish to provide
evidence for.

The first endeavour one may pursue is to consider what the ultradiscrete analogue
of singularity confinement would be. However, the guiding principle for the singularity
confinement of discrete equations is somewhat lost for equations over semirings. The
‘singularities’ no-longer manifest themselves over S in the same way since there is no way to
obtain an ∞ using operations of max and +. In fact many methods one wishes to apply over a
field are lost when one’s domain is the semiring. The information in the discrete equation is
lost, imposing a series of constraints and problems :

• Any rational expression you wish to find the ultradiscrete analogue of is required to be
subtraction free.

• As expressions over S, one loses information. For example, as an expression over
S, max(0, x, 2x) = max(0, 2x).

• The semiring S has no subtraction. For example, the linear equation max(0, X) = −1
has no solution.

Although these constraints are unavoidable when working over S, we may be able to exploit
a higher space to derive results for systems over S. These very results may not be obtainable
when restricting one’s attention to operations over S alone. This concept is more natural than
it sounds. For example, there exist linear difference equations over N whose solutions may not
be expressed using operations over N alone, but are easily expressed over Q or C. We intend
to do the same. In order to do this, we review some well-established concepts in algebra.

Definition 1. A non-Archimedean valuation ring is a ring, R, with a valuation, v : R →
R ∪ {−∞}, such that

(1) v(x) = −∞ if and only if x = 0.
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(2) v(xy) = v(x) + v(y).
(3) v(x + y) � max(v(x), v(y)).

We note that the valuation v is ‘almost’ a homomorphism from R into S. There are many
examples of non-Archimedean valuation fields in the literature:

• C[t] = the polynomials in C over t with valuation

v : a0 + a1t + · · · + ant
n → n

where an �= 0.
• Q under the valuation

v :
a

b
pn → −n

where a, b � p. This is the p-adic valuation.
• K = C(x) with valuation v which is the unique extension of the order function that brings

a function to the negative of the order of its pole or 0 to the algebraic closure. As a
function v : K → Q.

It is interesting to note that varieties in the tropical sense can be expressed as the topological
closures of images of varieties under the valuation over K [18]. Disjoint from the theory of
[18] comes a sense of convergence from a metric induced by the valuation:

d(x, y) = ev(x−y). (5)

In this sense, the tropical geometric framework combined with the analytic framework fuels
the approach we have adopted for examining associated linear problems. We may develop
a systematic way of tackling the theory of associated linear problems over S using this
framework. However, the above examples of fields are too simple, or insufficient in some
manner, for our purposes. The first two fields are discrete valuation fields, and the last assumes
that the additively closed subset of the reals we used to form S is Q. We introduce the ring
that has suited our purposes.

Let � be the ring of all formal Z linear combinations of elements of U. We denote elements
of � by

x =
∑

ni(xi)

where ni ∈ Z and xi ∈ U for all i. We may consider U as an additive group, in which case �

is a group ring. The ring possesses operations of + and ×. If x = ∑
ni(xi) and y = ∑

mi(yi)

the operations are defined by the equations

x + y =
∑

i

ni(xi) +
∑

i

mi(yi) (6a)

x × y =
∑
i,j

nimj (xi + yj ). (6b)

Let � be the field of fractions of �. We will denote elements of � by x
y

or by the ratio of
formal linear combinations that x and y represent. We endow � with a valuation, P : � → S,
defined by

P :
x

y
→ max

i
(xi) − max

i
(yj ). (7)
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We also define P(0) = −∞. The metric defined in terms of the valuation gives us a sense in
which sequences in � converge. We identify a sub-semiring given by

�0 =
{ ∑

nixi∑
miyi

such that mi, ni ∈ N

}
.

We note that P |�0 : � → S is a homomorphism of semirings.

Remark. As algebraic objects, the field � is isomorphic to the inversible max-plus algebra
[11]. As an ideological discrepancy, we do not insist that equations over � are of importance
in themselves. We intend to provide evidence that lifting max-plus equations to the level of a
field may be useful in determining properties of systems over S.

Given an element over S, we identify the standard lift to be the mapping s → 1(s)

(i.e. as a Z-linear combination, it is a single element whose Z component is 1 and real
component is S). For any equation, matrix or scalar we may identify an equivalent equation
in �0 recoverable through P. As we will see later, it may be preferable to not use a standard
lift. Given x ∈ S, P (1(x)) = x. If P(y) � x then P(1(x) + y) = x. We call the mapping
1(x) → 1(x) + y a projection preserving transformation.

2. Systems of linear difference equations over the max-plus semiring

We draw upon some classical results before delving into the crux of our theory. We start by
considering a system of linear difference equations of the form

Y (qx) = A(x)Y (x) (8)

where A is some rational matrix function in x and q ∈ C is fixed. If |q| > 1 then we have the
following symbolic solutions at 0 and ∞ as infinite products:

Y0 = A(x/q)A(x/q2)A(x/q3) . . . (9a)

Y∞ = A−1(x)A−1(qx)A−1(q2x) . . . . (9b)

The theory of Birkhoff concerns (amongst other things) when such solutions define convergent
sequences. It is well known that such a problem can be transformed to the case in which A is
polynomial. We may then assume that A is of the form

A(x) = A0 + A1x + · · · + Anx
n.

One classical result we attribute to Carmichael [2] is as follows:

Theorem 1. If A0 and An are semisimple with eigenvalues λ0, . . . , λm and µ0, . . . , µm such
that λi/λj /∈ qZ and µi/µj /∈ qZ then (9a) and (9b) define holomorphic functions with
possible poles at zqZ where det A(z) = 0. Furthermore we have the following forms,

Y0(x) = Ŷ0x
D0 (10a)

Y∞(x) = Ŷ∞xDnq
n
2 u(u−1) (10b)

where D0 = diag(logq(λi)),Dn = diag(logq(µi)) and u = logq x.

If such solutions exist, then we may define the connection matrix associated with (8) to be

M(x) = (Y∞(x))−1Y0(x) = . . . A(qx)A(x)A(x/q) . . . (11)
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which is obviously q-periodic in x. If we introduce a variable, t, and allow the coefficients Ai

to be functions of t, we may write

A(x) = A(x, t)

Y (x) = Y (x, t)

M(x) = M(x, t).

If the system is such that M(x, t) = M(x, qt), we call the transformation Y (x, t) → Y (x, qt)

a connection preserving transformation. A necessary condition for this to occur is that Y must
satisfy the linear system given by the equation

Y (x, qt) = B(x, t)Y (x, t) (12)

where B = Y∞(x, qt)(Y∞(x, t))−1 = Y0(x, qt)(Y0(x, t))−1. It is important to note that the
matrix B is rational in x. This extension imposes a compatibility when attempting to calculate
Y (qx, qt). This forces the condition

A(x, qt)B(x, t) = B(qx, t)A(x, t).

It was surprising, albeit amazing to discover that q-PV I and the q-Garnier equation came as
necessary compatibility conditions for connection preserving transformations [8, 20]. This
provides further evidence that connection preserving deformations are the discrete analogue
of isomondromic deformations of linear systems [5].

We will show how one may transfer such results to the max-plus semiring. In the max-plus
semiring setting, we consider systems of linear difference equations given by

Y (X + Q) = A(X) � Y (X) (13)

where A is tropically rational in X. We may transform this system analogously, reducing the
equation to one in which A is polynomial in X using the max-plus analogue of θ functions,
thus we may assume that A is of the form

A(X) = A0 ⊕ A1 � X ⊕ · · · ⊕ An � nX.

Unlike linear systems of q-difference equations, we do not have the luxury of being
able to invert matrices in general. Necessary constructs to define the conditions for the
existence of a connection matrix (such as eigenvalues) have no analogous manifestation over S.
The only solvable case at a glance seems to be the set of tropically linear scalar equations;
these are solved with not much difficulty at all. One is required to find solutions to the scalar
case to transform A from a rational matrix to a polynomial matrix in X over S. For general
systems of linear difference equations, we need to rely on a different set of tools. Since
invertible matrices are a rarity in the max-plus setting, we are not able to analogously define
solutions at both 0 and ∞, but we are able to define

Y0(X) = A(X − Q) � A(X − 2Q) � A(X − 3Q) . . . (14a)

(Y∞(X))−1 = . . . A(X + 2Q) � A(X + Q) � A(X) (14b)

under conditions in which these converge. This would be sufficient to define a connection
matrix over S given by

M(X) = (Y∞(X))−1 � Y0(X). (15)

We will be concerned when such a matrix can be defined. We are required to lift the problem
to �0 in order to make some headway on the problem.
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It is now convenient to consider the analogous problem over �. This is given by the
system of linear difference equations given by

Y(1(X + Q)) = A(1(X))Y(1(X)) (16)

where A is of the form

A(1(X)) = A0 + A11(X) + · · · + An1(X)n. (17)

As a matter of notation, it is convenient to write F(1(X)) to mean the function of the real
variable X taking values over �. Furthermore, by letting the Ai be matrices over �0 such that
P(Ai ) = Ai , then this is an analogous system to the system over S via P. The canonical choice
of matrices would be given by the standard lift. We are interested in the following symbolic
solutions:

Y0(1(X)) = A(1(X − Q))A(1(X − 2Q))A(1(X − 3Q)) . . . (18a)

Y∞(1(X)) = A(1(X))−1A(1(X + Q))−1A(1(X + 2Q))−1 . . . . (18b)

This infinite series can be expressed as the limit of a series of matrices over �, which we
require to be convergent over �. We will extend � by taking the closure under the metric. We
now are in a position to state the main theorem as shown in [12].

Theorem 2. Suppose A0 and An are semisimple over � with eigenvalues λ1, . . . , λm and
µ1, . . . , µm respectively. If |P(λi) − P(λj )| < Q and |P(µi) − P(µj )| < Q for all i, j then
the symbolic solutions (18a) and (18b) define convergent functions in some open set of �.
Furthermore, have the forms

Y0(X) = Ŷ0(X)D
X
Q

0 (19a)

Y−∞(X) = Ŷ∞(X)D
X
Q

n 1

(
nX(X − Q)

2Q

)
(19b)

where D0 = diag(λi) and Dn = diag(µi).

If (18a) and (18b) exist, then we may define the connection matrix over � given by

M(1(X)) = (Y∞(1(X)))−1Y0(1(X))

which is expected to be pseudo-constant under the evolution 1(X) → 1(X)1(Q) = 1(X + Q).
Semisimplicity over � is a rather strict condition due to the fact that the field is not

algebraically closed. If we were to take the algebraic closure of the field, or even adjoin
appropriate eigenvalues as a field extension, it would be unclear as to how to define P on the
field extensions. This would give us some ambiguity in how we state of the conditions in the
theorem. Although this is a rather large constraint for systems over �, there are an infinite
number of systems over � that map to the same system over S. This allows for a relaxation of
the conditions for the existence of a connection matrix over S significantly.

Corollary 1. Let Ai be a set of matrices over �0 such that P(Ai ) = Ai such that the system
defined by equations (16), (17) possesses solutions (18a) and (18b). Under these conditions
(13) possesses a solution given by (14a) and the formal inverse of a solution given by (14b).

The crux of this relaxation lies in the conditions for there to exist a projection preserving
transformation that brings a matrix that is not semisimple to one that is semisimple. There are
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a plethora of examples in which one may apply projection preserving transformations to the
standard lift of the problem so that the resulting linear problem over � satisfies the conditions
of the main theorem. This tool is useful for deriving extensions to the above corollary that are
based on a handful of simple inequalities that may be explicitly stated over S. One may also
use such theory to easily find powers of matrices over S.

We are now in a position to define the connection matrix over S to be the product

M(X) = (Y∞(X))−1 � Y−∞(X).

We are now in a position to introduce a connection variable T. We have over � that

A(1(X)) = A(1(X), 1(T ))

Ai = Ai (1(T ))

Y(1(X)) = Y(1(X), 1(T ))

M(1(X)) = M(1(X), 1(T ))

so over S we have

A(X) = A(X, T )

Ai = Ai(T )

Y (X) = Y (X, T )

M(X) = M(X, T ).

Just as in the q-difference case, if we constrain the system by the relation M(1(X), 1(T )) =
M(1(X), 1(T + Q)) over �, it is a necessary condition that Y satisfies another linear equation

Y(1(X), 1(T + Q)) = B(1(X), 1(T ))Y(1(X), 1(T )).

If in addition we may transform the problem (through some projection preserving
transformation of A or otherwise) so that B is a matrix over �0 then we may consistently
extend (13). This extension over S may be characterized by the equation

Y (X, T + Q) = B(X, T ) � Y (X, T )

where B(X, T ) = P(B(1(X), 1(T )). We then have the following compatibility condition
over S:

A(X, T + Q) � B(X, T ) = B(X + Q,T ) � A(X, T ). (20)

This is the equivalent derivation of a Lax pair over a max-plus semiring. We consider any
compatibility condition arising in this manner a necessary condition for a connection preserving
transformation. We consider this evidence of integrability for any system equivalent to this
compatibility condition.

3. Example

This example was introduced by the author et al [9] as a ultradiscretized version of q-PIII . In
relation to (1), we study the linear system (13) in which the matrix A is given by

A(x, t) = A0 ⊕ A1 � X ⊕ A2 � 2X

where the coefficient matrices, Ai , are given by
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A0 =
( −∞ A

2 − 3Q

2 + W
A
2 − 3Q

2 − W −∞
)

A1 =
(

W − W − Q −∞
−∞ W − W − Q)

)

⊕
(

A − Q + T + W + W −∞
−∞ A − Q + T − W − W

)

A2 =
( −∞ A

2 − Q

2 + T − W
A
2 − Q

2 + T + W −∞
)

.

The lifted matrix required over �0 is given by the standard lift (A → (1(aij ))). The eigenvalues
of A0 and A2 are given by the solutions to the characteristic equations

λ2 − 1(A − 3Q) = 0

µ2 − 1(A − Q + 2T ) = 0.

The eigenvalues are λ1 = 1
(

A
2 − 3Q

2

)
, λ2 = −1

(
A
2 − 3Q

2

)
, µ1 = 1

(
A−Q

2 + T
)

and
µ2 = −1

(
A−Q

2 + T
)
. We have the equalities P(λ1) = P(λ2) and P(µ1) = P(µ2); this

tells us the conditions for the corollary are met. This implies A possesses a connection matrix
and that we may derive the appropriate extension of the linear system by defining the B matrix
over S. We let

B(X, T ) = B0 ⊕ (B1 � X)

where the coefficient matrices, Bi , are given by

B0 =
(

W − W −∞
−∞ 0

)

B1 =
( −∞ A

2 + Q

2 + T − W
A
2 + Q

2 + T + W −∞
)

.

This Lax pair is equivalent to that found in [9] in which one necessary condition imposed
by the compatibility is (1). If one naively takes (20) to be the compatibility condition then

the left- and right-hand side have W inside the max statements, making it unclear how the
compatibility condition describes the evolution of W . The easiest way to see the compatibility
condition is through the fact that A contains a factor of B on the right, meaning that we may
obtain the matrix Ã given by

Ã(X, T ) =
(

X + W − W A

−Q X + W − W

)

that acts on our linear system in a manner such that Y (X + Q,T ) = Ã(X, T ) � Y (X, T + Q).
The equivalent compatibility condition is given by

Y (X + Q,T + Q) = Ã(X, T + Q) � Y (X, T + 2Q)

= Ã(X, T + Q) � B(X, T + Q) � Y (X, T + Q)

Y(X + Q,T + Q) = B(X + Q,T ) � Y (X + Q,T )

= B(X + Q,T ) � Ã(X, T ) � Y (X, T + Q)

which implies

Ã(X, T + Q) � B(X, T + Q) = B(X + Q,T ) � Ã(X, T ).
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Looking at respective parts, the off-diagonal entries give identities while the diagonal entries
give the conditions

W − W + max(0, A + T + Q + 2W) = −W − W + max(A + T + Q, 2W)

−W − W + max(A + T + Q, 2W) = −W + W + max(0, A + T + Q + 2W).

The compatibility conditions in (21) are both equivalent to (1). Hence we consider (1) as
having been derived as a compatibility condition resulting from a connection matrix preserving
deformation of linear systems.

4. Conclusion

There are many directions one can pursue with this theory. One intriguing possibility is the
formulation of Galois theory similar to the theory of [21] for linear systems over S. It would
also be interesting to see how one may develop this theory (and the q-difference theory) in a
direction analogous to inverse scattering and inverse monodromy [4]. This would reinforce
this notion of integrability through a connection matrix approach. Another possibility is the
prospect of an application of tropical algebraic geometry to the classification of these systems.
Many more practical applications pertain to the exploration of how to use such liftings to find
special solutions and symmetries of equations over S.
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